Phase 1 trial of KT-333, a STAT3 degrader, in patients with relapsed or refractory lymphomas, large granular lymphocytic leukemia and solid tumors

S.D. Smith ¹, A. Olszewski ², A. N. Starodub ³, D. A. Stevens ⁴, T. Feldman ⁵, P. Porcu ⁶, Z. Epstein-Peterson ⁷, A. Huen ⁸, L. Pinter-Brown ⁹, A. Mattour ¹⁰, R. Perea ¹¹, A. Gollerkeri ¹¹, J. Dey ¹¹, C. Klaus ¹¹, S. Agarwal ¹¹, S. Donohue ¹¹, R. Karnik ¹¹, J. Gollob ¹¹, A. Shastri ¹²

¹UW/Fred Hutchinson Cancer Center, Seattle, WA, USA; ²Lifespan Cancer Institute, Rhode Island Hospital, Providence, RI, USA; ³The Christ Hospital Cancer Center, Cincinnati, OH, USA; ⁴Norton Cancer Institute, Louisville, KY, USA; ⁵ John Theurer Cancer Center, Hackensack, NJ, USA; ⁶ Thomas Jefferson University/Sarah Cannon, Philadelphia , PA, USA; ⁷ Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁸ MD Anderson Cancer Center, Houston, TX, USA; ⁹ Chao Family Comprehensive Cancer Center, Orange, CA, USA; ¹⁰ Henry Ford Cancer Institute, Detroit, MI, USA; ¹¹ Kymera Therapeutics, Watertown, MA, USA; ¹² Montefiore Medical Center, Bronx, NY, USA

Introduction/Background	Results					
STAT3			Demographic	CS		
 STAT3 promotes tumor cell-intrinsic Cytokine Receptor (e.g. IL-6) Cytokine Receptor Receptor Cytokine Factor Receptor Cytokine Receptor Cyt	(Age (years)	Dose Level 1 0.05 mg/kg (n=4)	Dose Level 2 0.1 mg/kg (n=4)	Dose Level 3 0.2 mg/kg (n=3)	Dose Level 4 0.4 mg/kg (n=2*)	Overall (N=13)
expression of genes involved with survival,	Median (min, max) Sex (n, (%))	64.5 (57, 70)	63.5 (59, 74)	52.5 (40, 76)	74.5 (72, 77)	65.0 (40, 77)
proliferation,	Male Race (n, (%))	3 (75)	1 (25)	1 (33.3)	2 (100)	7 (53.8)
stemness and metastasis Cytokines	Black or African American White	- 4 (100)	2 (50) 2 (50)	1 (33.3) 2 (66.7)	1 (50) -	4 (30.8) 8 (61.5)
• STAT3 also promotes differentiation and	Unknown (patient did not disclose) ECOG (n, (%))	-	-	-	1 (50)	1 (7.7)
differentiation and stat3 activity of Stat3 KT-333	0 1	1 (25) 3 (75)	0 4 (100)	2 (66.7) 1 (33.3)	0 2 (100)	3 (23.1) 10 (76.9)
immunosuppressive Myeloid Cells	Number of prior systemic the	-	4 (4 0 0)		0 (4 0 0)	
cells in the tumor Cells Cel	≥3 Tumor type	4 (100)	4 (100)	2 (66.7)	2 (100)	12 (92.3)
microenvironment. Nucleus Vascularization	Solid Tumor [‡]	3 (75)	2 (50)	3 (100)	2 (100)	10 (76.9)
KT-333	PTCL ^Δ CTCL	- 1 (25)	1 (25) 1 (25)	-	N/A* N/A*	1 (7.7) 2 (15.4)
 Targeted protein degraders are a new therapeutic class of compounds that utilize the ubiquitie protocome system to target degradation of specific 	 ‡ = appendiceal; colorectal (2); pancreatic; endome △ = anaplastic T-cell lymphoma * = DL4, at time of data cut off, two patients were 			cholangiocarcinoma		

- utilize the ubiquitin proteasome system to target degradation of specific proteins.
- KT-333 is a first-in-class, potent, highly selective, heterobifunctional small molecule degrader of STAT3.
- In preclinical studies, proof of concept antitumor activity was seen with KT-333 monotherapy in mouse xenograft models of STAT3-dependent peripheral T-cell lymphoma (PTCL) and cutaneous T-cell lymphoma (CTCL) and with KT-333 in combination with anti-PD-1 in syngeneic mouse colorectal cancer model.

10	
Methods	
Study Design and O	bjectives
Phase 1a Dose Escalation & MTD/RP2D Expansion (n=~45)	Phase 1b Dose Expansion (n=20 each)
KT-333 IV Weekly in 28-	day Cycles
MTD/RP2D	Peripheral T-cell lymphoma (PTCL)
DLx Expansion Lymphoma/ST	Cutaneous T-cell lymphoma (CTCL)
DL4	Large granular lymphocytic leukemia (LGL-L)

Exposure and Disposition

• As of 01 May 2023, Thirteen patients received a mean of five doses across four dose levels.

• Five patients remain active, and eight patients discontinued between Cycle 1, Day 1 and C3, Day 22. Primary reasons for discontinuation were disease progression (3); withdrawal by subject (2); PI decision (2); and Adverse event (1; Gr. 2 squamous cell carcinoma of skin in CTCL patient with prior history of UVB treatment and recurrent SCCs of skin, possibly related to KT-333 per investigator assessment).

Overall Safety

Number of Patients with Adverse Event Occurring in ≥ 2 Patients (n, (%))

Preferred Term		Level 1 ;/kg (n=4)		Level 2 /kg (n=4)		Level 3 ′kg (n=3)		e Level 4 /kg (n=2 ^c)		rall ^{a, b} =13)
	All	Related	All	Related	All	Related	All	Related	All	Related ^d
Fatigue	2 (50)	-	1 (25)	-	1 (33.3)	-	-	-	4 (30.8)	-
Anemia	-	-	2 (50)	-	1 (33.3)	-	-	-	3 (23.1)	-
Constipation	2 (50)	-	1 (25)	-	-	-	-	-	3 (23.1)	-
Nausea	1 (25)	-	1 (25)		1 (33.3)	-	-	-	3 (23.1)	-
Dehydration	1 (25)	-	1 (25)		-	-	-	-	2 (15.4)	-
Dizziness	1 (25)	-	1 (25)		-	-	-	-	2 (15.4)	-
Skin infection	1 (25)	-	1 (25)		-	-	-	-	2 (15.4)	-

(a) All Grade 1 and 2 events except the following: 1 patient with Gr. 3 abdominal pain and 1 patient with Gr. 3 fatigue that were not related to K1-333 (b) No Grade 4 or Grade 5 events.

(c) At time of data cut off, DL4 had enrolled two patients and no AEs had been reported.

(d) AEs related to KT-333 (n=1 each): Gr. 1: abdominal pain upper, LDH increase, and rash. Gr. 2: diarrhea, hypothyroidism and squamous cell carcinoma of the skin

Safety Summary: At the time of the data cut off, KT-333 was well tolerated, with no dose limiting toxicity observed and no serious adverse events considered related to KT-333.

Advanced Solid Tumors

D=maximum tolerated dose; RP2D=recommended phase 2 dose; ST=solid tumo

Primary Objective: Safety, tolerability and determine the maximum tolerated dose (MTD)/recommended Phase 2 dose (RP2D) (Phase 1a).

Secondary: PK, preliminary efficacy.

Exploratory: STAT3 mutational status; STAT3 pathway gene expression including pSTAT3 expression at baseline, immune TME profiling & correlations with anti-tumor activity.

Key Eligibility Criteria

Inclusion Criteria

Phase 1a:

- > Lymphomas (including Hodgkin's, B- and T-cell) or solid tumors relapsed/ refractory (R/R) to at least two prior treatments or no available standard therapy.
- LGL-L R/R to one prior systemic treatment.
- Phase 1b: PTCL, CTCL, LGL-L (T-cell LGL-L or CLPD-NK) or solid tumors R/R to at least one prior systemic treatment or with no available standard therapy.
- ECOG of 0-2, adequate liver/kidney and bone marrow function (except for LGL-L). **Exclusion Criteria**
- Radiation, anti-cancer therapy or major surgery within 4 weeks.
- Autologous hematopoietic stem cell transplant less than 3 months prior to first dose of study drug.

Pharmacodynamics and Pharmacokinetics

Cycle 1, Day 1 Pharmacokinetic Profile and Parameters

PK Parameter	Dose Level							
	0.05 mg/kg (n=4)	0.1 mg/kg (n=2)	0.2 mg/kg (n=2)					
C _{max} (ng/mL)	307 (30.5%)	382 (405, 359)	1020 (1130, 902)					
AUClast (ng.h/mL)	1550 (65.7%)	1820 (2120, 1520)	3150 (3050, 3250					
Vd (L/kg)	0.277 (17.1%)	0.315 (0.293, 0.337)	0.388 (0.374, 0.401)					
CL (L/h/kg)	0.0447 (62.7%)	0.0565 (0.047, 0.0659)	0.0636 (0.0656, 0.0616)					
t _{1/2} (h)	6.25 (78.8%)	3.93 (4.32, 3.55)	4.23 (3.95, 4.51)					

Mean (%CV) shown for DL1; Mean (individual values) shown for DL2 and DL3

Proof-of-mechanism for KT-333 demonstrated with up to 88% mean max degradation of STAT3 in peripheral blood mononuclear cells

KT-333 achieved STAT3 pathway inhibition and downregulation of inflammatory biomarkers in peripheral blood

KT-333 achieved up to 88% mean maximum STAT3 degradation in peripheral blood mononuclear cells with evidence of STAT3 pathway inhibition (decrease in SOCS3) and downregulation of inflammatory biomarkers in peripheral blood.

Most common treatment-emergent adverse events were Grade 1-2 fatigue, anemia and gastrointestinal symptoms, with no DLTs or drug-related SAEs. Phase 1a dose escalation ongoing, with continued enrollment onto Dose Level 4.

Acknowledgement: Kymera Therapeutics would like to thank the patients for their participation in the clinical study and their family and friends as well as the support of the clinical sites.