

Translational & Clinical Track:

Development and Performance of Pharmacodynamic Assays to Demonstrate Proof-of-Mechanism for IRAK4 Degraders in a Phase1 Study

Alice McDonald - Senior Director, Translational Medicine

October 26, 2022

Forward-looking Statements

This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 (PSLRA) and other federal securities laws. These statements include information about our current and future prospects and our operations and financial results, which are based on currently available information. All statements other than statements of historical facts contained in this presentation, including express or implied statements regarding our strategy, future financial condition, future operations, projected costs, prospects, plans, objectives of management and expected market growth, are forward-looking statements. In some cases, you can identify forward-looking statements by terminology such as "aim," "anticipate," "assume," "believe," "contemplate," "continue," "could," "design," "due," "estimate," "expect," "goal," "intend," "may," "objective," "plan," "predict," "positioned," "potential," "seek," "should," "target," "will," "would" and other similar expressions that are predictions of or indicate future events and future trends, or the negative of these terms or other comparable terminology. These forward-looking statements include statements about the initiation, timing, progress and results of our current and future clinical trials and current and future preclinical studies of our product candidates and of our research and development programs; our plans to develop and commercialize our current product candidates and any future product candidates. We may not actually achieve the plans, intentions or expectations disclosed in our forward-looking statements, and you should not place undue reliance on our forward-looking statements. You should not rely upon forward-looking statements as predictions of future events.

Actual results or events could differ materially from the plans, intentions and expectations disclosed in the forward-looking statements we make. We undertake no obligation to update or revise any forward-looking statements, whether as a result of new information, the occurrence of certain events or otherwise. As a result of these risks and others, including those set forth in our most recent and future filings with the Securities and Exchange Commission, actual results could vary significantly from those anticipated in this presentation, and our financial condition and results of operations could be materially adversely affected. This presentation contains trademarks, trade names and service marks of other companies, which are the property of their respective owners.

Certain information contained in this presentation and statements made orally during this presentation relate to or is based on studies, publications, surveys and other data obtained from third-party sources and the Company's own internal estimates and research. While the Company believes these third-party studies, publications, surveys and other data to be reliable as of the date of the presentation, it has not independently verified, and makes no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources. In addition, no independent sources has evaluated the reasonableness or accuracy of the Company's internal estimates or research and no reliance should be made on any information or statements made in this presentation relating to or based on such internal estimates and research.

IRAK4 Scientific Rationale & Phase1 Study Design

IRAK4 Targeting: Degrader Advantage, Clinical Validation, and Human Genetics De-risking

Inhibitor

Kinase

Role

IRF5/7

KT-474 Phase 1 Trial Design Includes HV and Patients

Double-blind, Placebo-controlled, Single Ascending Dose (SAD) and Multiple Ascending Dose (MAD) trial

KT474-HV-101 Sample Collection and Testing Proof of Mechanism (PoM) and Proof of Biology (PoB)

IRAK4 Degradation in Blood

Methods Development: Measuring Degradation in Blood

FLOW in Whole Blood

Pre-dose Samples Provide Baseline IRAK4 Values

Blocking Antibody Utilized to Define the Assay Floor

Max IRAK4 signal (no block) Min IRAK4 signal (block)

Each subject sample is stained +/- block

Mass Spec in Isolated PBMCs

- Identification of most sensitive analytes
- Defining the linear range of the assay

Method Development of IRAK4 Flow Assay in Whole Blood from Healthy Donors

KT-474 at 200nM for 24 hours

Objective: Detect IRAK4 levels in circulating lymphocyte subsets and monocytes in whole blood

> Flow Immune Panel CD14+: Monocytes CD16CD56+: NK cells CD19+: B cells CD3+: T cells (total) CD4+: T helper cells CD8+: Cytotoxic T cells IRAK4

Assay Parameters	Final Recommendation
Anti-coagulant	Na Heparin
Shipping conditions	Ship @ 4C within 30 minutes of draw

Equal Degradation of KT-474 at 200, 400 and 2000nM

Blocking Control to Determine Floor of Assay

Stain immune panel with IRAK4 +/- Blocking control concentration pre-determined in optimization experiments

Developing MS Method in Isolated Healthy Donor PBMCs

Proposed Clinical Process

Phase 1 blood draw limitations prevented a separate sample collection for MS

Solution: retain cell layer after PK plasma collection & process within 4 hours

On site processing could not be performed immediately after blood draw

- Pilot study confirmed no loss of IRAK4 from 0-4 hrs. post collection
- KT-474 ex-vivo treatment of donor blood confirmed that PD can be measured

Comparison of IRAK4 levels in donor PBMCs to healthy donor tissue

PBMC expression levels are higher than human skin

Pilot Mimicking Clinical Process with Donor Blood

LLOQ P2

...... LLOQ P1

Peptide 1

Peptide 2

POM by MS and FLOW in KT-474 Phase 1 MAD Cohorts: Orthogonal Methods for Demonstrating IRAK4 Degradation in PBMC

Phase1 MAD dosing period: QD Day 1-14

100 Placebo 50 🖶 25 mg QD Mean SEM % Change Pre-dose \rightarrow Placebo Mean (± SE) Percent IRAK4 Change from Baseline 50 mg QD 50 MAD1 📥 100 mg QD MAD2 ₩ 200 mg QD -20 ∇ MAD3 MAD4 - -40 -20 -40 -60 -60 -80 -80 -100 1234 17 21 28 22 24 26 14 20 7 12 14 16 18 28 Ω Day **Days After the Start of Treatment**

Mass Spec on Isolated PBMCs

FLOW on PBMCs in Whole Blood

MAD Study: Once Daily Dosing Resulted in High Steady-State Exposures

PK Parameter	25 mg QD (n = 9)	50 mg QD (n = 9)	100 mg QD (n = 9)	200 mg QD (n = 9)
C _{max} (ng/mL)	8.20 (34.5)	12.0 (39.1)	16.1 (32.0)	25.2 (26.7)
t _{max} (h) ^a	8.00 (4.0 – 8.0)	8.00 (8.0 - 8.0)	8.00 (8.0 - 12)	8.00 (8.0 - 12)
AUC ₂₄ (ng*h/mL)	153 (30.8)	224 (39.4)	314 (29.9)	498 (24.0)
C _{trough} (ng/mL)	5.03 (30.3)	7.28 (35.1)	9.81 (30.1)	18.8 (32.6)
Day 14/1 Ratio _{Cmax}	3.73 (47.1)	2.64 (26.3)	2.92 (37.7)	3.51 (34.7)
Day 14/1 Ratio _{AUC}	4.01 (41.2)	2.97 (23.2)	3.29 (38.9)	4.22 (28.8)

Steady-State (Day 14) PK Parameters

Geometric Mean (%CV) reported for all parameters, except t_{max} where median(range) are presented Accumulation Ratio represents fold change in exposure from Day 1 to Day 14

- High steady-state exposures with QD dosing, 3- to 4-fold increase in exposure on Day 14
 - Day 14 Ctrough in range where >90% IRAK4 degradation is expected
- Steady-state reached by Day 7 of dosing

KT-474 Achieved >98% IRAK4 Degradation (MS) Plateau in IRAK4 Reduction after 14 days in PBMC after 100 mg

Percent IRAK4 Reduction in PBMC by Mass Spectrometry

* p-values relative to placebo

KT-474 Achieved >90% Degradation in Monocytes at ≥ 100 mg (FLOW) Maximal Degradation in Monocytes in MAD4/200mg at Day 14

KYMERA ©2022 KYMERA THERAPEUTICS, INC.

KT-474 Lead to Maximum KD of IRAK4 at Day 14 Observed in both Mass Spectrometry and FLOW

Percent IRAK4 Reduction in PBMC by Mass Spectrometry

Percent IRAK4 Reduction in PBMCs by FLOW

Correlation MS to FLOW in MAD Cohorts Exhibits XX Correlation

MAD3 FL vs MS

MS

FLOW

VISIT	R Value % Change FLOW and MS
Day 2 Post-dose 24 Hours	0.418
Day 3 Post-dose 48 Hours	0.719
Day 4 Post-dose 72 Hours	0.697
Day 7 Post-dose 144 Hours	0.801
Day 14 Post-dose 312 Hours	0.725
Day 17 Post-dose Follow-up	0.618
Day 21 Post-dose Follow-up	0.689
Day 28 Post-dose Follow-up	0.244

Detection of IRAK4 Degradation in Skin

IRAK4 Detection Method Development in Skin

Once Daily Dosing Resulted in High Skin Exposures Exceeding Plasma

- Increasing exposures through Day 14
- C_{trough} levels in skin ~10-14 fold higher than plasma on Day 14

C_{trough} concentrations shown for Days 1, 7 and 14.

KYMERA

ng/mL (plasma) ng/g (skin)	25 mg QD (n=9)	50 mg QD (n=9)	100 mg QD (n=9)	200 mg QD (n=9)
Plasma Day 7	3.21	7.15	11.9	18.2
Plasma Day 14	4.72	8.49	11.6	17.4
Skin Day 7	21.5	40.2	53.5	80.9
Skin Day 14	44.5	94.2	93.7	238

KT-474 Reduced IRAK4 to Near LLOQ in the Skin (MS)

KYMERA ©2022 KYMERA THERAPEUTICS, INC.

- Baseline IRAK4 levels in skin substantially lower compared to PBMC
- Dose-dependent IRAK4 degradation in skin by mass spectrometry
- Steady-state not yet reached at day 14
- Mean IRAK4 levels at 200 mg dose nearing LLOQ by Day 14, with knockdown up to 90% at 200 mg
- Comparable degradation in PBMC shows that effect of KT-474 is independent of baseline expression level

IRAK4 Localization and Subsequent Degradation Observed in Skin of Healthy Volunteers treated with KT-474

Feasibility to Detect IRAK4 Degradation in Patient Samples

FLOW Assay Defined Baseline IRAK4 Expression in Immune Cells from HS Patients

IRAK4 Expression in Blood Immune Cells by HS Disease Severity (IHS4)

- IRAK4 levels detected in circulating cells from HS patients
- Monocytes express IRAK4 at significantly higher levels compared to other immune subsets

• IRAK4 levels remain the same in patients across disease severity (same results obtained with HS-PGA and Hurley (Max) staging), with a trend of higher IRAK4 median expression in patients with more severe disease

IF: IRAK4 Expression is Detectable in Lesions from HS and AD Skin Biopsies

Summary KT-474 Pharmacodynamic Assays

- Multiple methodologies were developed to measure on-target knock down of IRAK 4 degraders in blood and tissue
- Successful implementation of pharmacodynamic assays in the healthy volunteer portion of the study demonstrating POM in blood and skin
 - Blood assays (MS and FLOW) had a high correlation with MS measuring greater degree of degradation compared to FLOW
 - Skin assays (MS and IF) were comparable with MS measuring greater degree
- Baseline evaluation of IRAK4 levels in blood and skin lesion samples from subjects with hidradenitis suppurativa have been established with PD assays
- Plans to apply these assays to blood and skin samples from HS and AD patients in recently completed Phase 1 patient cohort

KYMERA

*This work was done under collaboration agreement with Sanofi