Identification of Highly Potent and Selective Interleukin-1 Receptor Associated Kinase 4 (IRAK4) Degraders for the Treatment of Autoimmune Disease

INVENTING NEW MEDICINES

WITH TARGETED PROTEIN DEGRADATION

IRAK4 Targeting: Clinical Validation, Human Genetics De-risking and Degrader Advantage

Unmet Medical Need

Validated Biology

Undrugged Node

Precision Medicine Approach

Clinical Pathway Validation

IL1-Rα/**IL-1**β: Rheumatologic Diseases

IL-1α: Atopic Dermatitis

IL-1β: CANTOS Data, Atherosclerosis, Lung Cancer

IL-18: Macrophage Activation Syndrome

IL-36: Generalized Pustular Psoriasis

IRAK4 SMI: Rheumatoid Arthritis

- IRAK4 is a key component of the myddosome protein complex involved in innate immunity that mediates signals through IL-1R and TLRs
- Several commercial and clinical stage drugs have validated this pathway in multiple diseases
- Degrading IRAK4, and fully blocking IL-1R/TLR signaling, is expected to be superior to antibodybased therapies that block only single cytokines, with convenience of a daily oral therapy
- IRAK4 degradation can block pathway fully vs kinase inhibitors that partially block signaling
- Human genetics de-risk safety: adults that lack IRAK4 are healthy

KT-474: Specific IRAK4 Degradation

Degradation in Human Monocytes

- Calculated DC₅₀ of 2.1 nM and E3 ligase dependent degradation of IRAK4 in human immune cells
- IRAK4 was only protein of over 10,000 to be degraded by KT-474 in human immune cells at concentration 10-fold above the DC₉₀

Selectivity in Human PBMC

IRAK4 Degradation Superior to Kinase Inhibition in Cytokine Production

- Functional activity of KT-474 assessed by measuring proinflammatory cytokine levels upon activation
- Cells pre-treated with KT-474, a negative control, and small molecule IRAK4 kinase inhibitors
- KT-474 better able to inhibit IL-6 under both LPS and LPS + IL-1B than clinically active IRAK4 SM kinase inhibitor PF-06550833

Legend	Compound	IL-6 IC ₅₀ (nM)	
-	IRAK4 Degrader	8.0	
-	Negative control	450	
	IRAK4 SMI (PF-06550833)	N/A	

85% IRAK4 Degradation Sufficient for Maximal *In Vivo* Efficacy in Preclinical Models

- Ability to inhibit topical skin thickening induced by imiquimod was measured in a mouse model of psoriasis
- Orally dosed KT-474 inhibited thickening, a reflection of local and systemic inflammation, comparable to a topic corticosteroid after 2 or 4 days of dosing
- Full efficacy at doses achieving at 65-80% IRAK4 reduction in skin and spleen. In other models KT-474 has demonstrated full efficacy with 85% degradation

KT-474 Degrades IRAK4 in Cell Types Involved in Skin Inflammation

IRAK4 Degradation In Vitro by KT-474

Skin Inflammation in Rodents Induced by IL-33 is Abrogated by KT-474

IRAK4 Degradation by KT-474 is Superior to Kinase Inhibition at Reducing IL-33 Induced Local and Systemic Cytokines

Inhibition of IL-36 induced Local and Systemic Inflammation Following IRAK4 Degradation with KT-474 is Superior to Kinase Inhibition

IRAK4 Degradation By KT-474 Potently Inhibits **IL-17** production *In Vitro*

IRAK4 Degradation in PBMC

IL-17 Release by CD4+ Th17 Cells

KT-474 Reduces Severity of Th17 Model of CNS Inflammation

IRAK4 degraders administered therapeutically (d13-d28) proved as efficacious as FTY720, whereas IRAK4 SMI did not reduce disease scores significantly.

KT-474: Close to Complete IRAK4 Degradation and Well Tolerated in Preclinical Non-rodent Model

- Orally-administered KT-474 evaluated in a 14day non-GLP tox and PKPD study in rodent and non-rodents (shown).
- Almost complete knockdown demonstrated across multiple tissues at multiple doses
- Compound well-tolerated at all doses up to 600 mg/kg for rodents and 100 mg/kg for nonrodents

KT-474 Phase 1 Trial Design

Double-blind, Placebo-controlled, Single Ascending Dose (SAD) and Multiple Ascending Dose (MAD) trial

Three-part Phase 1 Design

MAD Portion SAD Portion MAD Portion Healthy Volunteers Healthy Volunteers Patient Cohort

- 7 cohorts (up to 56 adult healthy subjects)
- 8 per cohort (6:2 randomization)
- **Single** dosing (starting dose 25 mg)

- 5 cohorts (up to 60 adult healthy subjects)
- 12 per cohort (9:3 randomization)
- **14x** daily doses (starting dose 25 mg)

- 1 cohort (up to 20 AD and **HS** patients)
- Open-label
- **14x** daily doses

Endpoints

Primary

Safety & tolerability

Secondary

SAD & MAD

- Pharmacokinetic measures (half-life, bioavailability)
- IRAK4 knockdown in PBMC

Secondary

MAD only

- IRAK4 knockdown in skin biopsies
- Proinflammatory cytokine and chemokine levels in skin biopsies
- C-reactive protein and cytokine levels in plasma
- Ex vivo response of whole blood to TLR agonists and IL-1β

KT-474 Achieved Profound IRAK4 Degradation after Single Oral Dose that Lasted for at Least 6 Days

LOD = limit of detection

- * SAD4 144/312 h PD timepoints pending
- Detected by Mass Spectrometry in circulating PBMC
- IRAK4 levels nadired at 48-72 hours
- IRAK4 reduction lasted for at least 144h (6 days post-dose) in all dose groups

KT-474 Reached >85% IRAK4 Degradation After Single Dose

Percent IRAK4 Reduction in PBMC at 48 Hours Post-Dose using Mass Spectrometry

	Placebo (n=8)	Cohort 1 (n=6)	Cohort 2 (n=6)	Cohort 3 (n=6)	Cohort 4 (n=6)
KT-474 dose	-	25 mg	75 mg	150 mg	300 mg
Mean IRAK4 Change	+3%	-38%	-71%	-78%	-84%
Median IRAK4 Change	+16%	-41%	-71%	-78%	-90%
p value*		0.0057	<0.0001	<0.0001	<0.0001

* p-values relative to placebo

KT-474 Development Plan

Non-Interventional

- 40 patients (HS n=30; AD n=10)
- Biomarker endpoints in blood and skin: IRAK4, cytokines, acute phase reactants
- Data updates:
 - Interim: Oct 2020
- Updated HS: May 2021
- Final AD: 2H21

Phase 1

- SAD dosing initiated 1Q21
- SAD/MAD studies: healthy volunteers (HV) and AD/HS patients
- Endpoints: primary Safety; secondary Proof-of-Biology
- Data updates:
 - Interim SAD proof-of-mechanism: June 2021
 - HV proof-of-biology: 4Q21
 - Patient proof-of-biology: 1H22

Phase 2

 Randomized, placebo-controlled trials in patients in potential indications such as AD, HS, RA, others

KT-474 an IRAK4 Degrader for the Treatment of Autoimmune Disease

- Kymera has developed a first-in-class potent, selective and orally active IRAK4 degrader, KT-474, with franchise potential
 across a wide variety of immune-inflammatory diseases such as HS, RA, AD and others
- KT-474 is more potent and more broadly active than leading IRAK4 small molecule kinase inhibitors and has demonstrated
 activity in a variety of preclinical models with a promising activity and safety profile
- In these studies, KT-474 inhibited cytokine production and skin inflammation upon IL-33 or IL-36 injection more potently than IRAK4 SMI
- In a classic model of antigen-induced, Th17-driven neuroinflammation (MOG-EAE), IRAK4 degraders reduced clinical scores similarly to FTY720 (a standard of care for MS), and more robustly than IRAK4 SMI.
- Kymera has initiated Phase 1 trial of KT-474, including SAD and MAD healthy volunteer portions
- KT-474 interim Phase 1 results demonstrate degrader proof-of-mechanism, first time for TPD in a placebo-controlled study
- Median IRAK4 reduction of 90% (p<0.0001 vs placebo) and maximum reduction of 94% at 48h following single dose of 300 mg, with sustained degradation that lasted for at least 6 days at all dose levels
- Expect to present updated results from healthy volunteer SAD/MAD portions in Q4'21

THANK YOU

inquiries@kymeratx.com

