KYMERA

IRAKIMiDs: Protein Degraders Targeting Both IRAK4 and IMiD Substrates Show Combinatorial Effects Leading to Broad Activity with Durable Regressions in MYD88 Mutant Lymphoma Xenografts *In Vivo*

Duncan H. Walker, Michele Mayo, Christine Klaus, Haojing Rong, Scott Rusin, Kirti Sharma, Alice McDonald, Veronica Campbell, Joseph Kelleher, Jared Gollob, Nello Mainolfi, Matthew Weiss. Kymera Therapeutics, Cambridge, MA

INTRODUCTION

MYD88 mutations constitutively activate both NF-kB and AP1 pathways, promoting B-cell proliferation and survival

 30-40% ABC DLBCL; 30-70% Primary CNS lymphoma; 45-75% Primary extranodal lymphomas; >90% Waldenström macroglobulinemia

IRAK4 is an integral component of MYD88 signaling, and degradation of IRAK4 by Targeted Protein Degraders (TPD) abrogates downstream signaling to both NFkB and MAPK pathways

- Both kinase activity and scaffolding function are required for signaling and IRAK4 TPD show greate inhibition of signaling compared to IRAK4 small molecule inhibitors
- Previous IRAK4 degraders have shown promising activity in some MYD88^{MT} models, however, are less active in some models with varying co-mutations, such as SUDHL2 (MYD88²²⁸/TNFAIP3-)

Co-mutations with MYD88 (e.g. CARD11, A20) may correlate with diminished activity
IMIDS (Lenalidomide and pomalidomide) can also inhibit NFRB and induce Type 1 IFN signaling driving tumor cell death

We propose that combining IRAK4 degradation with IMiDs in lymphomas with MYD88 mutations will broadly suppress NFkB signaling and increase Type 1 IFN responses, driving increased cell death over either drug alone

Here we describe IRAKIMiDs: novel heterobifunctional degraders that use an IMiD as a CRBN binder and an IRAK4 binder to drive degradation of both IRAK4 and IMiD substrates in a single molecule.

 The synergistic activity of targeting both the MYD88 and Type1 IFN pathways in a single molecule leads to strong single-agent activity in a range of MYD88^{MT} but not MYD88^{MT} lymphoma models, with improved cell kill and breadth of activity relative to IMiDs or IRAK4-selective degraders

IRAK4 Degradation and IMiDs have Complementary Activity

IRAK4 Degraders and IMiDs Show Synergy in MYD88^{MT} Cell Lines

IRAKIMIDs show consistent activity in MYD88^{MT} cell lines, superior to IMiDs or IRAK4 kinase inhibitors: IRAKIMIDs (KTx-582, KTX-475) drive cells to complete cell death (by CTG endpoint) Active arcoss multiple MYD88-MT cell lines with varying co-mutations and minimal activity in MYD88^{WT} cell lines

OCI-Ly10 - MYD88¹²⁶⁵⁹/CD79b^{MT}; SUDHL2 - MYD88³²²²⁸/TNFAIP3^{-/-}; OCI-Ly3 - MYD88¹²⁶⁵⁹/CARD11^{MT}
IMiDs have inconsistent activity in MYD88^{MT} DLBCL:

IMiDs, including next-generation IMiDs (CC220, CC122) cannot drive complete cell death alone in either SUDHL2 or OCI-Ly10

IRAK4/Ikaros DC-rr (nM)

Degradation of Both IRAK4 and IMiD Substrates Drive Antitumor Activity of IRAKIMiDs The IRAKIMiD KTX-582 induces tumor regression in OCI-Ly10 and SUDHL2 1500 Vehicle, IP, QD x 21 days OCI-Ly10 SUDHL2 Vehicle PO, QD x 21 days KTX-582, 100 mg/kg, PO, QD x 21 days KTX-582, 5 mp/kg, IP, QD x 21 days KTX-582, 25 mg/kg. IP, QD x 21 days (mm 100 /olume I Jom 200 14 21 21 28 14 Days after the start of treatment Days after the start of treatment Tumor regressions by KTX-582 are KTX-582 induces regressions in both OCI-Ly10 associated with degradation of both and SUDHL2 as a single agent IRAK4 and IMiD substrates Activity is seen broadly across multiple models **IRAK**4 Ikaros with different MYD88 mutations and co-(% Cont mutations Regression is associated with >80% degradation 60 56 60 5 of both IRAK4 and IMiD substrates after 5 days 25 94 85 dosing CONCLUSIONS IRAK4 degraders are synergistic with IMiDs in MYD88-mutant lymphoma cells IRAKIMIDs are TPD that simultaneously degrade IRAK4 and

INAKIMIDS are IPD that simultaneously degrade IRAK4 and IMiD substrates, engaging both activities in a single molecule

IRAKIMiDs show potent *in vitro* activity and *in vivo* tumor regressions in multiple models of MYD88^{MT} lymphoma

- Have broader activity than IMiDs in vitro, that is consistent with both IRAK4 degradation and IMiD activity in driving single agent activity
- A lead IRAKIMID with improved potency and PK is on track for Phase 1 trials in lymphomas in 2021

Disclosures: Walker, Mayo, Klaus, Rong, Rusin, Sharma, McDonald, Campbell, Gollob, Mainolfi, Weiss: Kymera Therapeutics: Employment, Equity Ownership. Kelleher: Kymera Therapeutics Equity Ownership